Inside ReOrbit’s On-Satellite Systems

On-satellite software has become a hot topic over recent weeks. On Episode 12 of The Satellite & NewSpace Matters Podcast we spoke to Sethu Suvanam, CEO of ReOrbit, about how his company is creating potential through their new platform. Sethu moved into the satellite industry after finishing his PhD in information and communication technology, and he has since gone on to found ReOrbit, the satellite company that’s disrupting the industry with their reusable, autonomous and software-defined micro satellite platform. 

What can we expect to see from ReOrbit next? 

If you look at the space industry today, the core element is actually data. That’s what is generating revenues. If you go to any operator, they are actually more worried about the satellite in itself, which shouldn’t be the case. On the ground, if you look at how things are working with cell phones, nobody’s worried about the hardware equipment, they’re talking about ‘How much should I charge for megabits?’. Data is what we should all be considering. We’re now planning to build infrastructures that optimise the data flows in space so that the operators can just think about the fastest way of getting the data. We are envisioning our future view as very similar to Cisco and how they brought about a connectivity revolution for the computer industry. We want to bring a similar connectivity revolution to the satellite industry.

The focus on software within the satellite and space industries has a lot of potential. How do you think a software-first approach will create potential?

Typically, a Space Systems Engineer will design the hardware first, then think about how they can write the software. The moment the machine changes though, the requirements are not the same. That’s why space missions have at least 30% NRA. 

We’re developing the software first. Going software-first opens up your market, because you can then buy best in class hardware. It also enables us to start developing applications and functionalities onboard the satellite. If you want to have those architectures, then you need to get out of this hardware-first approach and put software at the centre. At the end of the day, it’s all about optimising the data flows and data routing, which is all done on the software, not the hardware. Going software-first also significantly cuts costs.

What are ReOrbit’s plans for the next 12-24 months?

At the end of the day, the crux of any company should be to generate revenues. That’s what we’re focused on; to keep increasing our revenues and profitability. We’re also building a sustainable company. It’s not sustainable in the clean air, clean energy sense, it’s more like creating a long-lasting company where generations of people can work. We are definitely growing and scaling up our team. We are now onboarding some more superstars of space. We’ve been quite successful in closing big contracts in the last couple of years, and now we are reaching a stage where we will start delivering on those. This fall it will be critical for us to deliver what we promised on time and at the cost we quoted. 

To learn more about the work that Sethu and ReOrbit are doing, tune into The Satellite & NewSpace Matters Podcast here.

We sit down regularly with some of the biggest names in our industry, we dedicate our podcast to the stories of leaders in the technologies industries that bring us closer together. Follow the link here to see some of our latest episodes and don’t forget to subscribe.     

Commercialising the European Launcher Market

The European launch market has seen a recent boom, thanks to increasingly accessible resources. To unpack this phenomenon, we spoke to Jörn Spurmann on Episode 11 of The Satellite & NewSpace Matters Podcast. Jörn is the CCO and co-founder of Rocket Factory Augsburg (RFA), a NewSpace launcher business that provides flexible and low-cost access to space through their launch system RFA ONE. He shared his perspectives as one of the leading experts in the European launch market. 

What are your thoughts on the commercialization of the European launcher market?

I think we could do far more things in space if we spent budgets more efficiently. If we look at the US Navy a couple of years ago, when they couldn’t fly anything into space anymore, they realised they couldn’t continue developing these things themselves, so they started commercial competitions to buy services. That’s something we should do in Europe. If the European Space Agency defined what they needed in terms of service, they could invite tenders and see what happens. If no one replies, they can do it themselves, but what if we could make collaboration happen? 

We’re at a great point in the space transportation industry in Europe. There are a number of companies that are well financed and could produce commercial alternatives to the current industry monopolies. These companies have the competence to launch systems and infrastructures, even if it’s only on a small scale. That is what the government institutions will leverage to destroy the monopolies that we currently have on the launch market in Europe. This will create commercial competition around launch system developments. 

There’s a lot of speculation about how investments in Europe are going to change. Government bodies might be able to get away with spending less money and getting the rest privately funded.. That gives them a larger budget to spend on useful things, right? They should invest in whichever service will deliver connectivity or observation to the public, and use those models to understand climate change and how to influence it for the better. These are the things they should be working on, along with scientific exploration of the solar system or human spaceflight. Having commercial competition in the launch market will significantly advance those efforts. 

Why do you think it has taken the commercial world so long to think that the launcher market is one that they should be active in?

It comes from those monopolies. Every continent has their own institutional agencies or monopolies that are fed money by the system, so there’s typically very little incentive to compete at a cheaper rate. When there’s no competition, companies can make it as expensive as possible to maximise their own revenues. That’s the wrong motivation. Satellites becoming smaller inspired small launch systems, which are easier to develop. That’s why the private finance industry actually put money into our sector, because it’s a shrinking product and a growing market that’s easy to disrupt. 

Why do you think we’ve got a huge number of companies looking to break into the launcher market at the same time?

Launches have become simpler. The biggest difference lies in going from a plan on PowerPoint to building hardware and having successful traction on test milestones. Players in the industry are being differentiated by their ability to design a launch system, get it to the testing stage, and get stuff up in the air. A lot of university students are exploring rocketry, specifically with paraffin, which is inherently safe. That’s great because students can do practical lessons, and we benefit a lot from the ideas they have. 3D printing also makes manufacturing much simpler. This combination of technologies and education systems makes it possible to do small launch systems with only a few people, which is changing how the industry is perceived. 

What do you think is the most important development to make sure that we have a successful launcher market here in Europe? 

It’s not so much a technical development but more of a change in governance that we need. We also need to keep up with our own competition. In Germany, there is a competitor 100 kilometres away from us. I’m totally convinced that it motivates us to outperform them everyday, because we can feel how close we are. Competition is the secret ingredient to having great products and a great business. We need to create all classes of launch systems in Europe if we want to catch up with the US, because they are more advanced in the vehicle agenda. If we want to get in on this boom in the space industry, we have to focus on competing with each other in Europe as well.

To hear more about the state of the launch market in Europe, tune into The Satellite & NewSpace Matters Podcast here

We sit down regularly with some of the biggest names in our industry, we dedicate our podcast to the stories of leaders in the technologies industries that bring us closer together. Follow the link here to see some of our latest episodes and don’t forget to subscribe.     

Communicating The Satellite & NewSpace Industry to Outsiders

On Episode 7 of The Satellite & NewSpace Matters Podcast we spoke to marketing and communications expert Dave Hebert. With an impressive career across the communications industry, Dave moved into the space sector in 2016 and is now the Vice President for Global Marketing and Communications at Astroscale. Having worked with companies such as MITRE and The Aerospace Corporation, Dave’s insights on communicating the space industry to the world are at the forefront of the conversation. 

How do people currently see the Space industry?

There is a contradiction in the public perception of space. On one hand it’s an unending source of inspiration, creativity and wonder, and it’s a permanent fixture in the pop culture zeitgeist. Franchises like Star Wars and Marvel that are in many ways space-based generate interest around the world and billions of dollars in revenue. That actually speaks to the problem that the industry faces, which is that space remains in that fantasy realm for so many people. 

On the other hand, space is seen as an ivory tower that is meant for a select few, not for everyone. It’s become inaccessible and expensive – a playground for billionaires. The public opinion surveys about civil space programmes often reveal that people are very excited about civil space and exploration, but when they see the price tag, they baulk at it. When you look at wider civil spending, that number is actually relatively small, but that’s the tension of the economy. High profile celebrities and heads of state are vilified for spending money, effort and attention up in space when we have so many issues down on Earth. The world just doesn’t get it. We need to continue having that conversation and help the world understand how space can serve as a vehicle for improving quality of life on Earth.

What do you think is one of the most important challenges that the industry needs to overcome to guarantee its future relevance in the minds of the people outside of it?

The industry is facing consolidation. There’s been so much growth in the space sector, but it’s not realistic to expect that growth to be evenly distributed across the industry. Value creation, data products and services that connect with other sectors will help us build relationships. That’s an important direction for the space industry to take. What are other sectors’ aspirations? What are their pain points? What can space do to help with those things? Terrestrial industries are fundamental to quality of life, so let’s ask ourselves ‘What is it they’re trying to do? Is there any way that we can make it easier for them to do that or overcome the obstacles they face in doing it?’ We’ve defined the end user in the space sector as the companies who buy our data, but there are people two or three steps down that ladder who have no idea what space could do for them, even though they rely on it. We need to start focusing on those people instead.

How do you think we can address the disparity between people’s perception of our industry and the reality of what we do?

It’s all about bringing people into the sector. The first question that space businesses and organisations need to ask themselves when they’re recruiting is, ‘Does this position have to be filled by somebody who’s already in the space sector?’ There are some roles where the answer is a very quick, immediate, yes, but the question should always be asked in a very earnest way. If you can’t answer yes, you have to say, ‘Okay, well where do we never show up?’ Identify those communities and say, ‘Hey, we need people like you, are you aware that a job in the space sector might be an opportunity for you?’ We should be inviting people in. 

We also need to be equipping our recruiters to diversify their networks. Consider questions like ‘How are you reaching out? Are you engaging with universities that represent an excellence in skill sets that are not related to the usual circles you run in? Are you approaching diverse candidates that you don’t normally pursue? Are you engaging professional societies that are not in the space sector?’ The burden is on us to go outside of our comfort zone and find underrepresented communities and say, ‘We need people like you’.

To find out more about creating diversity in the  sector, tune into The Satellite and NewSpace Matters Podcast here. 

We sit down regularly with some of the biggest names in our industry, we dedicate our podcast to the stories of leaders in the technologies industries that bring us closer together. Follow the link here to see some of our latest episodes and don’t forget to subscribe.     

The Future of GEO in the Space Industry

As investment patterns have shifted through the Satellite & NewSpace industry, some people have called GEO satellite’s relevance into question. On Episode 10 of The Satellite & NewSpace Matters Podcast we spoke to Gregg Daffner, the CEO of GapSat, about the role of GEO satellites and how that can continue. Gregg is a well-known face in the industry who previously co-founded Asia Broadcast Satellite, before creating an innovative startup in a satellite industry that leases in-orbit satellites to satellite operators. Usually, this is until they can build their own custom satellite, but also provide additional capacity when internal crises occur. Here’s what Gregg told us about the future of GEO:

Non-geostationary satellites are the hot item of the moment. There’s no question that it’s on everyone’s minds. It’s sexy. It’s responsible for generating an enormous amount of interest in our industry. Elon Musk has almost single handedly rekindled excitement for people who are considering a career in space, communications, satellites and so forth. It’s one of the best things that’s happened in well over a decade. Bringing new blood and new interest into the industry is becoming a household discussion topic, and it’s really refreshing; it portends a bright future. I think that a lot of that is hype, though. Hype has a positive effect, but it’s also misled a lot of people as to what the future is going to look like. If you’re realistic, the truth is that for a substantial number of services, geostationary provision and infrastructure is still a much more cost effective way of delivering bits. 

LEO is specifically good for low latency uses and for covering areas that are out of  geostationary satellites’ reach. The furthest northern and southern latitudes, especially the poles, only have patchy service from GEO, but that’s not an issue for LEO and MEO satellites. If you’re a high speed trader on the stock market, there’s no question that you want to be doing something that’s the shortest fibre length and or the shortest stop to a satellite. LEO and MEO can provide that, but for a significant percentage of all the communication that is carried by satellite, that is not the principal driver. LEO is important geographically, and for certain kinds of services, and maybe for supercomputers that can’t have those delays, but for most things it’s a non-issue. 

When it comes to cost efficiency, most users don’t need low latency, but they do need low costs. There are two factors in costing, which is antennas and infrastructure. Antennas are much more expensive, because they have to track speed and movement if you’re doing physical tracking, mechanical steering, etc, and that’s expensive. That’s where having GEO satellites is better. You only need three satellites and three orbital locations to cover the entire world (with the exception of the poles), with overlapping coverage. If you have three of them placed equidistantly around the globe, you can cover the entire Earth, with most locations capable of seeing two satellites. That gives you diversity routing, and removes issues of looking angles, and a blockage of buildings, mountains, trees, etc. To do the same thing with LEO, you need hundreds, maybe even thousands, of satellites, because they’re so close to the Earth. 

The bottom line is that the infrastructure costs of building, launching, controlling and replacing all of those satellites is really high. That’s before you’ve even factored in the costs of potential pollution in space and the potential for unintended consequences like collisions.  From what I can tell, between the additional costs for building, launching and operating a non-GEO system versus a GEO one, the costs are a magnitude greater for less capacity. If you’re looking at broadband, you’re going to be able to get a whole lot more stuff through a geostationary satellite than you can on smaller, lower-orbit satellites. The production of ground equipment like mobile phones and tracking antennas will probably never be as inexpensive as a GEO, because the LEO or MEO antenna would be able to communicate with a GEO satellite as well. 

Satellite has the potential to provide communications where there is no terrestrial alternative. The three areas where that takes place are aeronautical, maritime and remote or rural areas. Anywhere there’s no cables is an area for satellites to step in. In the old days, communication satellites were used primarily for voice communication, and they were placed in the middle of oceans to connect the continents. As cables have been run, people have stopped focussing there for satellites. What was once the ideal location for them has shifted over to land masses, and less over water masses, because that’s where people are communicating and where broadcasters are distributing their signals. 

When you’re talking about aeronautical and maritime, you’re not talking about where people are living and acting, but where they’re travelling. Suddenly, something which was a quaint idea has become a hot idea for the current day. In every part of our lives, the amount of broadband capacity we need access to is increasing, and the same is true for airlines and ships. When you position satellites mid-ocean, roughly 120 degrees apart, those three satellites have ideal coverage for both of those services, while also being able to reach the landmasses on the edges of those waters. Looking to the future, GEO isn’t going anywhere. 

To hear more about Gregg’s work at GapSat and his take on the wider Satellite & NewSpace industry, tune into The Satellite & NewSpace Matters Podcast here

We sit down regularly with some of the biggest names in our industry, we dedicate our podcast to the stories of leaders in the technologies industries that bring us closer together. Follow the link here to see some of our latest episodes and don’t forget to subscribe.     

The Importance of Sustainability in Space

Sustainability is important in industries across the world, and above it. On Episode 9 of The Satellite & NewSpace Matters Podcast we spoke to Luc Piguet, CEO and co-founder of ClearSpace. The company was created to respond to concerns about an increasingly congested space environment. ClearSpace revolutionise how space missions are conducted, and provide institutions and commercial operators with support-free services in orbit, and capture and deorbit obsolete objects threatening space operations. He spoke to us about the importance of their missions and how the industry can move forwards in tackling sustainability. 

Why do you think it’s so important for companies to promote a sustainable space economy?

We have four kids, and my wife realised some time ago that they were seeing problems everywhere. Some of them are teenagers, and they’re asking ‘Why should I study every day when the Earth’s a mess?’ There’s pollution, global warming, plastics in the oceans, wars, pandemics… and it’s only getting worse. We realised that if one generation can make a difference and solve those problems, it’s ours. We were just getting the wrong messages to our kids. We decided that from now on the message is going to be ‘the future’s bright’. We have all the tools to solve those problems, or if we don’t have all of them, we’ll get them. That’s the mindset that we put behind what we do here, and that’s what motivates us.

We’re tackling that depressing narrative by improving sustainability in space. You can model the amount of debris up there in terms of sources of debris and sinks of debris. Sources are all the platforms we send up, so all the rocket bodies and satellites that are sources of fragments, from which smaller debris will naturally multiply in the sinks. You have to consider atmospheric drag when you’re designing and testing the things you’re launching, and depending on the altitude you’ve got to add more or less depending on the level of orbit. It’s obvious that we need to create artificial sinks and stabilise the environment, because when we add more stuff into an environment it’s getting rapidly congested, that is the definition of instability. 

That’s what drove us to get the company started. It’s been years of work looking at what should be done, and figuring out how it can be done. What is the most pragmatic way forward? We don’t care what the solution is, we don’t care if it’s deorbiting. The goal is finding the right solution for it, and working on that. Once we’d built the company and seen traction building, the question for us was how to keep it going. What does it mean to make this environment sustainable? It’s not just removing debris, it’s more than that. It’s any type of service where you reduce, recycle, reuse. A lot of services create a more sustainable environment, but also produce tangible, immediate value for the operators. That’s the sweet spot we want to get started from. 

In a lot of sectors you can do things more cheaply by polluting more. It’s obvious that nobody wants to live in a dump, so one of the reasons that sustainability has become such a big topic is because the next generation doesn’t want to live with what we leave behind. They want to live in a world that is sustainable. That is something that’s understood by investors, banks and all the other actors around the industry. The downside of not promoting sustainability is much bigger than the cost of actually solving it. You can make a calculation between the cost of prevention and cost of recovery. If you prevent it, you pay $1, and if you recover it, the cost is $17. That’s a real incentive for doing it. The problem is, you have to do the prevention before the catastrophe happens, so it looks like you’re going to spend $1 now for something that isn’t happening. In the space industry though, catastrophe is predictable. You can statistically calculate what’s going to happen. It’s really important to give this level of clarity to where we’re going to be in a few years from now if we don’t take sustainability seriously. It’s just logical. 

How are you improving sustainability in your current projects?

We’re working on a life extension mission. In ClearSpace One, the objective was to do in-orbit servicing and space debris removal. It’s in the interest of any operator in the geostationary ring, to have servicing in orbit. There’s obviously short term needs that have a limited timeframe, but once the capability is built, there’s so many other things that can be done. The capacity of intervention is a normal thing to have in any industry. We’re building the future with the next phase of the space industry. We were convinced from the start that the only way to create a good product is to do it with your customers. We knew that something needed to be done about space debris, but we didn’t want it to be anything that the operators wouldn’t want to buy. Very early on, we started talking with all the operators we could as soon as possible, and maintained a great relationship with them. That gave us a perspective on what their challenges and concerns are. Where are the opportunities for our service to improve their lives? You have to do something that makes sense and naturally fits into the industry.

To find out more about sustainability in the space industry, tune into Episode 9 of The Satellite & NewSpace Podcast here

We sit down regularly with some of the biggest names in our industry, we dedicate our podcast to the stories of leaders in the technologies industries that bring us closer together. Follow the link here to see some of our latest episodes and don’t forget to subscribe.     

Achieving the Future of Satellite Communications

On Episode 8 of the Satellite & NewSpace Matters Podcast we were delighted to be joined by Ronald van der Breggen, the CCO at Rivada Space Networks. Ronald is a well known face in the satellite industry, and has been involved in a number of exciting projects and businesses over his career. He is also a key commentator on the state of the industry, and regularly shares his fascinating insights with his audiences. 

Ronald told us about the challenges facing the future of satellite communications and how we can work together as an industry to overcome them. 

What do you see as the most important challenge for the future of the industry?

We need to keep talent coming in, and we need to focus on getting investment. Starlink is another thing that scares me. The service was perfect for the first users, but now that things are starting to fill up people are seeing things being dropped, performance is going down and they’re nowhere near the number of subscribers they need to reach the targets that they were projecting a couple of years ago. That stuff scares me, because we need them to be successful. We need them to thrive so that people don’t start to shy away from it or think ‘this whole space thing was a bust’. If they do that, everybody in this industry is going to have a really hard time. 

Space is a fantastic industry with an enormous potential. Many of the problems that we see in the world today rely on large networks that reach every location on Earth, and can be solved using satellite infrastructure. We need to figure out how to translate that into our business cases, and establish what is already achievable. Our leaders have to keep the company floating, attract the right talent and get them enough money to keep satellite production going. We need to succeed together, because if we don’t, we risk everyone failing. 

Where do we need to make improvements in order to achieve that future?

Collectively as an industry, we need to find a better way to position ourselves in the larger data communication market. When we talk about satellite pricing, there still is this notion that we’ve got a lot of capacity and the demand is smaller. That means that there’s pressure for the price to go down. That’s a problem, because we need to keep investments up if we’re going to advance. 

Companies need to find a balance between using expensive, high-speed and secure connections to do the best for their business while keeping their costs down. It’s up to us to offer those solutions. How about sending part of your data over a constellation in space, that allows you to go from your research centre to headquarters without having to worry about anybody tampering with the data, simply because they don’t have access to it? People will want it because it saves a lot of money. 

You don’t need to use satellite tech for everything. Physical infrastructures are perfectly capable of hosting mundane tasks like downloading something from the internet, but if somebody wants to send the latest research findings to headquarters, then you should send it through a secure satellite infrastructure. People are more than happy to pay a premium for that security. 

It’s all about finding a niche where you can make a difference. People have said that I’m limiting myself to the business segment, but there’s more money there when you address people’s needs and problems, because that’s what they’re willing to pay for. It might be a niche in terms of the applications, but it’s a huge market in terms of the number of companies that are interested in it. 

What we need to do as an industry is pay more attention to the larger ecosystem. There are serious problems out there that people need real solutions for, and for some of them satellite systems are much better equipped to handle them than terrestrial systems. It’s rampant. The applications are there for gaming, high frequency trading, etc, we just need to find a way to meet those needs and communicate why we’re the best ones to do it. That would help our industry keep growing collectively.

To hear more about how the satellite industry is developing, tune into The Satellite & NewSpace Matters Podcast here

We sit down regularly with some of the biggest names in our industry, we dedicate our podcast to the stories of leaders in the technologies industries that bring us closer together. Follow the link here to see some of our latest episodes and don’t forget to subscribe.     

How New Companies Can Compete With Legacy Businesses

On Episode 6 of The Satellite & NewSpace Matters Podcast we were delighted to be joined by Emile de Rijk, the CEO and co-founder of SWISSto12. Emile has successfully made the transition from academia to startup co-founder by taking his PhD in physics and applying it to the real world. They use patented 3D printing technology to create a range of RF products and systems, including a new HummingSat range. In this bite-sized blog we dive into Emile’s experiences of disrupting the Satellite & NewSpace industry as a small business, and tap into his expertise as a leader in our sector. Read on to hear his insights.

Your growing business is in an exciting phase of development. How do you keep growing?

We started small with an initial product in technology focus, but we’ve always been able to adapt to the market and the voice of the customer. There are always ideas and challenges to inspire us. In that respect we’ve moved from building single waveguides to full satellites. That gives away the DNA of the company, which is to always be ambitious, look at the next big problem that we can solve and then go do it pragmatically without debating it for ages. That creates an exciting working environment that enables us to take initiative and go one step further in solving complex problems and developing exciting products.

There are a number of small businesses trying to compete within the satellite industry, which is saturated with legacy businesses who have been around for a long time and have been successful. There is an ecosystem of smaller businesses like yourself trying to break into that space. Why do you think the satellite industry is like that?

The satellite industry has a huge entry barrier. If you sell a satellite, it’s not like you can send someone up there to repair it. The consequences of failure are huge and extremely expensive. You have to develop products that are proven and reliable, and that someone can trust with an investment. That’s the major entry barrier. To overcome that you just need to accumulate a lot of knowledge, partner up with the right companies and suppliers and build a product that will fulfil the mission. The nature of that technical difficulty is such that it makes it very difficult for newcomers to actually come in. 

It’s possible if you’re patient and thorough and you work hard, which is what we’ve done so far. It’s a very exciting business to get into, because coming up with great products that are engineered correctly and fulfil the needs of the customer is highly rewarded by the industry. 

The other way to get into this market is to not compete with the incumbents. Why? Because the incumbents are there for a reason. They have launch experience and they’ve optimised their products for decades. They have a great offering. Our strategy has never been to compete in that market, but rather to find new markets that are not addressed, where we can create a different product that is complementary to what the big incumbent players propose. 

On top of that, our way to get from a radiofrequency product manufacturer to a satellite manufacturer has been to team up with players and suppliers and reuse satellite subsystems that are not worth reinventing. We are really innovating around payload and RF technology, which is our focus. Our innovation is in developing a smaller spacecraft that fulfils different types of missions. We work with heritage and legacy suppliers and partners to procure all the subsystems that benefit from heritage and just need to be integrated differently into a smaller spacecraft to make it a success. It’s a very collaborative strategy within the Satellite ecosystem to build this new success around smaller geo satellite missions.

All in all, the trick to successfully entering the industry is to use it to your advantage by creating a space for yourself and working alongside those bigger legacy companies instead of against them. 

To hear more about Emile’s fascinating work in the Satellite & NewSpace industry, tune into the full episode of The Satellite & NewSpace Matters Podcast here

We sit down regularly with some of the biggest names in our industry, we dedicate our podcast to the stories of leaders in the technologies industries that bring us closer together. Follow the link here to see some of our latest episodes and don’t forget to subscribe.     

Space in the Future

We recently sat down with Laurynas Mačiulis on The Satellite & NewSpace Matters Podcast, where we talked about the future of the NewSpace industry. Laurynas is best known for launching Lithuania’s first satellite, which sparked the NewSpace company NanoAvionics. Today, NanoAvionics is one of the largest small satellite mission integrators in the world. But Laurynas Mačiulis didn’t stop there. In 2019 he helped co-found Astrolight, an advanced laser communication system for space, where he remains the CEO. With those credentials it’s easy to see why his thoughts on the future of space are so interesting!

What is the future for space?

There are always people who are pessimistic about investing anything in space, who think they should just make life better on Earth. We don’t need to put in a contradiction, we can do two things together. We can progress in space without sacrificing life on Earth or taking away from progress on Earth. It’s really complimentary. 

The philosophical question of ‘What is our future in space?’, even without the worry that something bad would happen here, is always really interesting. Our destiny as a species is actually to go further and explore. We don’t need to stop on Earth, we need to go further. I think that’s our destiny. Space transportation is probably the technology that will have to pave the way for this ability. Exploring whether life exists on other planets is a fascinating question that needs to be answered. 

When the space shuttle transportation technology reaches a level where it is affordable, space travel, space tourism, asteroid mining, building hotels in space, and maybe some remote colonies in other space stations and other planets is going to happen. When that happens, the other stepping stone will also be how to communicate, because we would need to be in touch. Information is something that connects us. Laser communication will play an important role there to actually enable that. 

Do you think people living in space is something that’ll happen in our lifetime?

I definitely think that we would have more of a presence in space. It’s my dream to see people landing on Mars. That would be a very important milestone in our evolution as a species. Even such simple things like giving ordinary people the chance to see from space would be a fantastic achievement, because I would compare it with the moments in our history where part of our civilization went to the other lands. There were some bad things that happened with that, but there were also a lot of good things where new ideas emerged. We could also see some very interesting developments from societies living in space and maybe coming up with better ways to organise society. The fragile connection that we have between space and earth is the transformational feeling that astronauts are always talking when they see Earth. Imagine if everybody could feel that, I think that could change our whole attitude to life. Fundamentally, I’m quite optimistic about space travel. It’s not just for a million years’ time, it’s definitely the goal for my lifetime.

To hear more about the work that Laurynas is doing to advance the NewSpace industry, tune into the full episode of The Satellite & NewSpace Podcast here

We sit down regularly with some of the biggest names in our industry, we dedicate our podcast to the stories of leaders in the technologies industries that bring us closer together. Follow the link here to see some of our latest episodes and don’t forget to subscribe.     

What are the issues facing “connecting the unconnected” in the African continent?

On Episode 1 of The Satellite & NewSpace Matters Podcast we were thrilled to welcome Scott Mumford, CEO of Liquid Telecom Satellite Services, and now CCO of Liquid Dataport. Scott has a very impressive 25 years of experience in the industry, starting as an Engineer through to C-Suite.  

We unpacked so many interesting topics in this episode, our favourite highlight is below! 

What do you think is the key to helping those without connectivity get connected? 

There are a number of factors, so I wish there was just one answer, because then it would be easy to deliver. The technology gap is, is one that we need to solve, for sure.  

If you look across the African continent, generally, there are hundreds of millions of people without access to the internet. Internet penetration rates across the continent are around sort of 34%, which is the lowest globally. Some of that comes from the sheer size of the continent.  

I think a lot of a lot of people see Africa on a map and go, “yeah, it’s relatively big”, but, the maps are quite deceptive – it’s vast. I’m sure we’ve all seen those maps, where you can see the US and India and China and Europe and everything all sort of fitting within the African continent from a landmass perspective.  

The second element of that is really where technology is gone. If you look at you, me, and everybody else, everything really has moved towards applications and handset-based usage. Banking, shopping, travel, you name it, are all pretty much done from a handheld device these days.  

And, that really hasn’t spread into the African continent, partly from a cost perspective. It’s a bit of a vicious circle, there’s no network because there are no handsets, and there are no handsets because there’s no network.  

So, where do you go first? But I also think, you know, a lot of those, a lot of countries around Africa are still very cash-based economies as well,  because of the lack of connectivity and devices, the move to a digital banking and finance sort of architecture hasn’t taken hold as yet, either.  Dealing with a number of currencies in physical cash is another complication, that that has to be overcome.  

It’s a multifaceted problem that isn’t just on the communications industry, or the satellite industry. It’s the banking sector, the manufacturers, it’s a big, big melting pot that everybody needs to put into.  

There’s a lot of progress going on there and satellite to sort of bringing it back, that’s playing a massive role in the sense that we’re seeing huge deployments of visa terminals and satellite terminals and satellite connectivity across the continent.  

To listen to the full episode, click here.  

We sit down regularly with some of the biggest names in our industry, we dedicate our podcast to the stories of leaders in the technologies industries that bring us closer together. Follow the link here to see some of our latest episodes and don’t forget to subscribe.     

Space Tech Expo Europe – Day 3

The third and final day is here and that can only mean one thing – scrambling for swag. Beyond the frantic grabbing of goods, there was a wonderful murmur of meetings, conference talks, and general excitement about the success of Space Tech Expo 2022. 

We were delighted to see the continued levels of attendees right from the start of the day until the very last moments, soaking up every minute of Space Tech Expo possible. Easy to spot were the sore-headed attendees of the Telespazio after-party last night walking the halls with glossy eyes. After all, even though it’s the final day, the show must go on.

And go on it has! It’s been delightful to see the continued enthusiasm and high levels of attendees today. We’ve seen everything from robots roaming to holograms to satellite demos and a vast array of space tech in action. 

Today’s conference talk highlights include a great discussion on the ever-looming issue of space traffic and collision management. It was fantastic to see some of the best minds in the industry coming together to tackle what will prove to be a massive obstacle for the issue in the coming years with the rise of mega-constellations. This was followed by what was a great way to finish an incredible array of talks from the three conferences – the innovation spotlight presentations.

Now, sitting in Bremen airport reminiscing about the great event that Space Tech Expo 2022 truly was, I can’t wait to see what next year has to offer! 

Today, Bremen really feels like the “City of Space”.